
Application of BIRCH to text clustering

c© Ilya Karpov c© Alexandr Goroslavskiy
Federal state unitary enterprise “Institute “KVANT”, Moscow

karpovilia@gmail.com sashka airok@mail.ru

Abstract

This work represents a clustering
technique, based on the Balanced Iterative
Reducing and Clustering using Hierarchies
(BIRCH) algorithm and LSA-methods for
clustering large, high dimensional datasets.
We present a document model and a
clustering tool for processing texts in
Russian and English languages and compare
our results with other clustering techniques.
Experimental results for clustering the
datasets of 10’000, 100’000 and 850’000
documents are provided.

1 Introduction

Many important tasks in IR involve clustering large
datasets of unstructured text. Although there is a
large set of efficient techniques for clustering of
abstract data sets, few of them have been applied
to clustering textual data. The task is specific
due to the following reasons: (1) large number
of data points, (2) large number of clusters and
(3) high clustering feature dimensionality. The
other problem is requirement in high performance
and precise linguistic techniques to deal with a
large set of documents. This work represents
a clustering technique, based on the Balanced
Iterative Reducing and Clustering using Hierarchies
(BIRCH) algorithm and LSA-methods for clustering
these large, high dimensional datasets in Russian
and English languages.

Input documents are stored as a set of
normalized terms vectors as described in Bag of
words model. Initial dimensionality of nearly
300’000 terms is reduced by the TF-IDF dispersion
threshold for each term of the document. Then,
term vectors are analyzed with latent semantic
analysis (LSA) as described in [2] and [3]. After
that, clustering with BIRCH algorithm is performed

Proceedings of the 14th All-Russian Conference
”Digital Libraries: Advanced Methods and
Technologies, Digital Collections” — RCDL-2012,
Pereslavl Zalesskii, Russia, October 15-18, 2012.

2 Related work

There has been proposed number of approaches
for clustering large collections of arbitrary data.
MST [7], DBSCAN [1], CLOPE [4] and BIRCH [8]
are the most suitable techniques for text clustering
according to the (1)-(3) criteria. All of them
are suitable high feature dimensionality and have
complexity O (n log n) for MST, DBSCAN and
CLOPE and O (n log k) for BIRCH. Another
method for clustering text datasets is called
Canopies algorithm and described in [4]. The
key idea of Canopies is to divide the data into
overlapping subsets (canopies). Then clustering
is performed by measuring exact distances only
between points that occur in a common canopy.
The algorithm requires O (nk) distance comparisons
per iteration of clustering, where n is the number
of documents and k - number of canopies.

3 Preprocessing

3.1 Building vector space representation

We use the "bag-of-words" model, where a
document is represented as an unordered collection
of terms, disregarding grammar and even word
order. In this work a term is a normal
form of the word with its part-of-speech tag.
t =< normalizedword, POS >; Note that in this
case different part of speech are normalized as
follows:

ADJECTIVE - subj case, singular num, masculine
NOUN - subjective case, singular num
VERB - infinitive
We checked two strategies to resolve word

polysemy: The naive one was to add all possible
terms to the term-vector. The second way was
to use lexical compatibility and choose the most
probable variant. Performance and quality will
be discussed at the RESULTS section. After
the normalization, a document in the collection is
represented as a vector of term weights, counted
according to the term frequency − inverse document
frequency (TF/IDF) model. D = (w1, ..., wn) The
result of this stage is a term matrix containing word
weights per document (rows represent unique words

and columns represent documents) as shown below:
w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n


where m is the number of documents and n is the
number of unique terms.

3.2 Reducing the clustering space dimension

First step in dimension reduction is removing
"noisy" parts of speech from the document model.
It stands to reason that adjectives and verbs bring
rather noise than useful information when they are
disconnected from nouns, so we used only nouns
in our experiments.

The next step is selecting the most informative
terms in the model. There are several methods
for choosing a threshold, based on the TF/IDF:
M. Kiselev uses the sum of term weights in
all documents [5], or the total frequency of the
term [6]. In this work we use the dispersion
of weight for each term in the collection as the
threshold: T = maxσ(wi), where i is term number.

The last step is Latent semantic analysis (LSA)
of the term matrix. LSA assumes that words that
are close in meaning will occur close together in
text and uses singular value decomposition (SVD)
to reduce the number of terms while preserving the
similarity structure among documents.

4 BIRCH algorithm

BIRCH algorithm is detaily specified in [8], we
only describe the basic ideas and concepts here.
The core concepts of BIRCH are Clustering feature,
CF-tree and Cluster radius. A Clustering feature is
a triple summarizing the information we maintain
about the cluster:

Def. 1 Given N d-dimensional data points in
a cluster {−→Xi} where i = 1, 2, .., N , the Clustering
Feature (CF) vector of the cluster is defined as a
triple: CF =

(
N,
−→
LS, SS

)
, where N is the number

of data points in the cluster, −→LS is the linear sum
of the N data points, i.e.

∑N
i=0

−→
Xi, and SS is the

square sum of the N data points, i.e.
∑N

i=0

−→
X2

i

Def. 2 A CF tree is a height-balanced tree with
two parameters: branching factor B and threshold
T . Each nonleaf node contains at most B entries
of the form [CF i, childi], where i = 1, 2, ..., B,
”childi” is a pointer to its i − th child node, and
CF i is the CF of the subcluster represented by this
child. So a nonleaf node represents a cluster made
up of all the subclusters represented by its entries.

A leaf node contains at most L entries, each of
the form [CF i, childi], , where i = 1, 2, ..., L. In
addition, each leaf node has two pointers, ”prev”
and ”next” which are used to chain all leaf nodes
together for efficient scans. A leaf node also
represents a cluster made up of all the subclusters
represented by its entries. But all entries in a
leaf node must satisfy a threshold requirement, with
respect to a threshold value T: the diameter (or
radius) has to be less than T

The tree size is a function of T. The larger T
is, the smaller the tree is. We require a node to fit
in a page of size P. Once the dimension d of the
data space is given, the sizes of leaf and nonleaf
entries are known, then B and L are determined by
P . So P can be varied for performance tuning.

Def. 3 A cluster radius R is an average
Euclidean distance between the data points and the
cluster centroid.

R =

(∑N
i=1 (
−→xi −−→x0)2

N

)1/2

where −→xi - documents in cluster, −→x0 - center of
the cluster (arithmetical mean of all documents in
the clustering space), N - number of points in the
cluster. BIRCH algorithm has three main stages:

1. Given the threshold T, the clustering space
is divided into the initial clusters in such a way
that cluster radius is smaller than R. BIRCH uses
extremely high performance method based on CF
trees to form the initial clusters. See [8] for details.

2. Initial cluster centroids are once again
clustered with agglomerative clustering tool. New
cluster centroids are determined after that.

3. New cluster centroids are used as seeds for
clustering space redistribution. Each document is
reassigned to the nearest seed.

5 Modifications

5.1 Defining the clustering threshold

The main advantage of BIRCH algorithm is its
high performance: given a threshold T value, the
cost of clustering will be only O (2n), but choosing
bad threshold may cause significant performance
reduction.

BIRCH authors proposes the following method:
Initially T is set to 0. If the number of leafs reaches
the maximum amount, T is extended and CF tree
is being rebuild. An assumption that the number of
points Ni, that can be contained in CF tree at the
i-th stage of the algorithm is in linear fashion with
Ti

d where d is the clustering dimension. The next
threshold Ti+1 is determined by linear regression
with regard to Ni+1 = min (2Ni, N), where N is
the total amount of points in the clustering space.

An implementation of this method shows that
either the threshold grows too slowly that causes
multiple tree reconstruction or the threshold grows
too fast that causes the loss of accuracy. We
provide a new method for determining the T value:

As in the previous solution, initially T is set to 0.
The next threshold Ti+1 is determined as a function
of the cluster size for a random set of clusters:
First, a cluster radius R = max (dist(X0, Xi)) is
determined as the maximum distance between the
point and the cluster centroid for a number Numr

of randomly selected clusters. Then, the threshold
Tk,i+1 = Round(α ∗ Rk) is determined for each
cluster. Resulting threshold Ti+1 is determined as
arithmetical mean of Tk,i+1.

5.2 Splitting tree nodes

The original BIRCH algorithm proposes splitting
node into to new nodes when the limit of childs
B is reached. Such a technique has disadvantages
when inner childs are miscellaneous node need to
be divided into three, four or more new node. We
propose agglomerative clustering to split the node:
the minimum number of nodes is set as 2, and the
maximum as the (B - parent node childs + 2).

6 Results

Method has been tested on the following collections:
Lenta.ru news articles collection (approximately
100’000 text documents for 2007–2012) Russian
volume of Wikipedia (850’000 articles at May
2012)

6.1 Performance results

Experimental clustering results for sets of various
sizes from Wikipedia are shown in table 1.

Table 1: Clustering time for BIRCH* and MATLAB
k-means algoritms

N docs k-means
(rand)

k-means
(10%)

BIRCH*

1 000 3,2604 3,4008 1,2034
2 000 8,8453 9,5005 1,3329
5 000 30,6698 46,2855 2,1813
10 000 158,8558 170,1035 5,1964
20 000 396,1333 337,009 8,8000
100 000 — — 19,66
500 000 — — 52,89
850 000 — — 104,59

Clustering has been performed with Intel Core i7
- 2600 CPU (3,4 GHz), 16 Gb DDR 3 RAM. The
first and the second column shows time in seconds

Figure 1: Clustering time vs Number of documents
dependency

for one iteration of the default MATLAB k-means
algorithm with different methods for centroids
calculating. The first one selects centers randomly
and the second one uses a random 10% subsample
of the entire training set. The rest of the parameters
are as follows: number of clusters - 100, number
of iterations - 1, number of dimensions - 200.
The third column is based on the modified BIRCH
clustering algoritm with the same parameters.

The results are shown at figure 1. n*log(k)
plot shows the estimating complexity of the BIRCH
algorithm where n is the number of documents and
k - the number of clusters. It is assumed that k =
log(n).

6.2 Accuracy results

Accuracy results for a set of 600 articles from
russian Wikipedia and 10000 news articles from
Lenta.ru are provided in table 2.
Training sets were made as an intersection of three
accessors hand-made clustering results. The results
were measured with F-measuse as follows: Given
i - some rubric from the document collection, j -
some cluster, gained from clustering let Dri be the
documents of i rubric, and Dci - documents of i
cluster. Precision of j-th cluster about i-th rubric
P (i, j) =

|Dri∩Dcj |
|Dcj | . Recall of j-th cluster about

i-th rubric R(i, j) =
|Dri∩Dcj |
|Dri| . F-measure of j-th

cluster about i-th rubric is F (i, j) = 2∗P (i,j)∗R(i,j)
P (i,j)+R(i,j) .

F-measure of the resulting clustering is:

F =

M∑
i=1

|Dri|
N

maxjF (i, j),

where N – total amount of docs.
All algorithms have random factor, so we evaluated
average F-measure for a set of 20 measurements.
Thow BIRCH can predict the number of clusters,
we fixed it to calculate the F-measure. It should
be mentioned, that being used with one iteration,

k-means algorithm shows very poor quality results
so we used 30 iterations for k-means with random
centers and 3 iterations for k-means with 10%
subsample. Total amount of iterations was found
experimentaly as the function of the F-measure
dispersion.

Table 2: F-measure results for BIRCH* MATLAB
k-means algoritm

Measure k-means
(rand) 30
iterations

k-means
(10%) 3
iterations

BIRCH*

avg(F)
600docs

0, 948 0, 933 0, 923

σ(F)
600docs

8, 2∗10−4 1, 2∗10−4 1, 6∗10−4

avg(F)
10000docs

0, 567 0, 572 0, 563

σ(F)
10000docs

5, 4∗10−4 2, 7∗10−4 1, 7∗10−4

Simularity of the results can be explained by
simular methods of assigning points to the clusters
at the last stage of all algorithms. Significant
loss of quality for news collections can be caused
by mixture of many topics in one document and
different taxonomies of the human classification and
statistical clustering. Better results can be achieved
in the combination of clustering and topic-based
classification.

6.3 Conclusions

This work has demonstrated the use of the modified
BIRCH clustering method for clustering large
datasets. In comparison with the naive clustering
methods, such as k-means or EM-clustering
computation time has been reduced by more than
two orders with the same accuracy.

References

[1] Martin Ester, Hans-Peter Kriegel, Jorg Sander,
Xiaowei Xu. A density-based algorithm for

discovering clusters in large spatial databases
with noise. In Evangelos Simoudis, Jiawei
Han, Usama M. Fayyad. Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining (KDD-96). AAAI
Press. pp. 226−231.

[2] Thomas Hofman. Probabilistic Latent Semantic
Analysis. EECS Department, Computer Science
Division, University of California, Berkeley &
International Computer Science Institute, 1999.

[3] Thomas Hofmann. Probabilistic Latent Seman-
tic Indexing. Conference on Research and
Development in Information Retrieval, 1999.

[4] Andrew McCallumzy, Kamal Nigamy. Lyle
H. Ungar, Efficient Clustering of High-
Dimensional Data Sets with Application to
Reference Matching. //KDD ’00 Proceedings
of the sixth ACM SIGKDD international
conference on Knowledge discovery and data
mining, 2000, pp. 169−178

[5] M. Kiselev, Text Clustering Procedure Based
on Pair-wise Proximity of Key Terms and its
Comparison with Metric Clustering Methods,
"Internet-mathematics 2007", Moscow, Yandex
publishing, 2007, pp. 74-83.

[6] M. Kiselev, M. Shmulevich, A. Ehrlich Auto-
matic clustering method and its applications,
Program products and systems No2, 2008, pp
47−50

[7] Zhou, Yan; Grygorash, Oleksandr; Hain,
Thomas F. Clustering with Minimum Spanning
Trees. International Journal on Artificial
Intelligence Tools, Feb2011, Vol. 20 Issue 1,
p139−177, 39p

[8] Tian Zhang, Raghu Ramakrishnan, Miron
Livny BIRCH:an efficient data clustering
method for very large databases. //Proceedings
of the 1996 ACM SIGMOD international
conference on Management of data,1996.

